Continuity Properties of the Lower Spectral Radius
نویسنده
چکیده
The lower spectral radius, or joint spectral subradius, of a set of real d× d matrices is defined to be the smallest possible exponential growth rate of long products of matrices drawn from that set. The lower spectral radius arises naturally in connection with a number of topics including combinatorics on words, the stability of linear inclusions in control theory, and the study of random Cantor sets. In this article we apply some ideas originating in the study of dominated splittings of linear cocycles over a dynamical system to characterise the points of continuity of the lower spectral radius on the set of all compact sets of invertible d×d matrices. As an application we exhibit open sets of pairs of 2×2 matrices within which the analogue of the Lagarias–Wang finiteness property for the lower spectral radius fails on a residual set, and discuss some implications of this result for the computation of the lower spectral radius.
منابع مشابه
CONTINUITY IN FUNDAMENTAL LOCALLY MULTIPLICATIVE TOPOLOGICAL ALGEBRAS
Abstract. In this paper, we first derive specific results concerning the continuity and upper semi-continuity of the spectral radius and spectrum functions on fundamental locally multiplicative topological algebras. We continue our investigation by further determining the automatic continuity of linear mappings and homomorphisms in these algebras.
متن کاملThe Sign-Real Spectral Radius for Real Tensors
In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.
متن کاملJoint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
متن کاملSharp Bounds on the PI Spectral Radius
In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.
متن کامل